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1. Introduction. In this paper an efficient method is described for the numerical 
evaluation, with a high-speed digital computer, of a special case of the integral of 
an uncorrelated bivariate Gaussian distribution centered at the origin -over the 
area of an arbitrarily placed circle in the plane. This function, popularly known 
as the circular coverage function or as the non-central chi-square distribution for 
two degrees of freedom*, can be written as 

(1) P(R) D) (exp-- + dxdy, 
27rax O.."s 2 ax av 

where S is the circle: (x - h) 2 + (y-k) 2 = (o-R) 2, where ?x = as, =- a, and aD 
is the radial distance from the origin to the center (h, k) of the circle of integration, 
S. Because of the equivalence mentioned above, a great deal of published literature 
applies. The papers [13], [15], suggested by the referee, list a large number of such 
references. 

The average computing time for the calculation of the integral in equation (1) 
to six decimal digits, by the method of this paper, is six milliseconds on the IBM 
7090 and ten milliseconds on NORC. An extensive inverse table, which is described 
in the last section of this paper and which is given in [4], has been computed with 
R as a function of P and D. A condensed version, Table 1, is presented herein. 

In the general case [3], [11] suppose the uncorrelated bivariate Gaussian dis- 
tribution centered at the origin of an Oxy Cartesian coordinate system has standard 
deviations ax, Yay along the x and y axes respectively, and that the integral of this 
function is to be evaluated over a circle of radius R with center at (h, k). Then 
the probability, P, can be written in polar coordinates accordingly: 

{RR h k R 
1 r 2r 

P - X- -X-a Y 
- 

(2) ax arm ax aye 27rax ay OJ 

(2 ( rh + r cosO)2 Ik +rsin \2rn 
exp- ~Lh)+ )j rdrdO, 

where x - h = r cos 0, y - k = r sin 0, 0 < r < R) 0 < 0 ? 2ir. 

If h = k = O. 

a special case identified as the V(K, c) or elliptical normal probability function 
(sometimes known by other titles, for example, the generalized circular error 
function) [4], [5], [6], [10], [14], [15], [16], [18] follows, i.e., 

(3) P , O, o) V(K, c) = - JK exp ( r2) (A2) rdr, 

Received July 27, 1961. 
* The equivalence between the function P(R, D) of equation (1) and the non-central chi- 

square distribution is evident from equation (2) in [13]. 
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where 

2 2 O _ -al 1, K aR/oz, A- 2c2 
X' +2c2 

Io(x) is the modified Bessel function of the first kind of order zero, [8]. Equation 
(3) is derived by setting h = k = 0 in equation (2), by using the trigonometric 

idenit (-+- co 20 2iCOS 20 
identity 1(?) cos 20 = 2 ksin20), and by introducing an integral expression for 

Io(x) which is given by 

(4) Io(x) = f exp (-x cos 0) O. 

Equation (4) can be derived from Example 1 (ii), page 62, in [8]. 

If O = ad = a, 

in equation (2), the distribution is circular normal. In this case, in which h and 
k are arbitrary, the center of the circle of integration can always be taken as offset 
a distance of aD from the origin along the positive x axis by simply introducing a 

rotation of axes through the angle arc tan (k). Moreover, by introducing the 

integral expression for Io(x) as given by equation (4), the circular coverage func- 
tion, P(R, D), [1], [4], [6], [7], [9], [12], [13], [14], [17], is obtained from equation 
(2), i.e., 

(5) P(,,A,!) _ P(R, D) = exp (-D2/2) f exp (-r2/2)Io(rD)rdr, 

where R =R/,a D2 (h2 + k2)/o2 
The function &P(R, D)I/R is required for computing the inverse function, 

R(P, D), by the Newton-Raphson procedure (Appendix C, [4]) and is also of use 
in computing P(R, D) itself (see equation (9)). This function is obtained straight- 
forwardly from equation (5) as 

(6) d = Rexp (l- J+D2)Io(RD). 

It is apparent by comparing equations (6), (9) that P/&IR can be computed 
simultaneously with P(R, D). 

In a previous paper, [18], a very efficient computing method was described for 
calculation of the V(K, c) function. The success of the method warranted con- 
sideration of extending the technique to the P(R, D) function. This is not as 
straightforward as for V(K, c); nevertheless, it is easily possible because of the 
existence of a simple functional relationship, equation (9), between P(R, D) and 
V (K, c). 

2. The Relationship between P(R, D) and V(K, c). The relationship between 
P and V can be derived by utilizing two preliminary results which are given by 
Fettis, in terms of q =_ 1 - P, in equations (1-35) and (1-44) in [61. They can be 
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stated in terms of P as: 

(7) P(R) D) -P(D) R) = -4 V (l R-D 12 JR-DI) (+) if R> D 

(8) P(R, D) + P(D, R) = 1 - exp (_f2 + D o) (RD). 

Equation (8) is easily derived. The origin of equation (7) is not known to the 
authors. The referee has pointed out that a geometrical proof was given by Dr. 
David C. Kleinecke of the University of California in 1955. (See also paper I of 
[15], page 613). Mr. Fettis has kindly placed at the disposal of the authors some 
correspondence which indicates that the relationship was given in a Sandia Cor- 
poration working paper in 1952, and that it was believed to have been originally 
derived in a British publication by using power series. 

It follows by adding the corresponding sides of equations (7) and (8) that* 

P (R, D) = -1[ -exp ( 2D)Io(RD) -4 t (l R-D 11 ) 

(9) (+) if R > D 
(-) if R < D. 

Thus, the P(R, D) function is computable at virtually the same speed as V(K, c), 
since the second term in the brackets turns out to be a by-product of the recur- 
rence relations which are used to compute V in the last term. Consequently, if 
there exists a satisfactory computing program for the V function, a computing 
program of equal merit can be realized for the P(R, D) function. 

3. Recurrence Relations. The V function that appears as the last term of 
equation (9) is identified with equation (3) by setting 

K = R- D , c- [R D II(R + 1)). 

It follows that 

A 2RD R2+ D2 A 
(RI- D)2 ' (R-D)2 

Where it is assumed R - D. If R = D, then, from equation (7), VI R-D - , 

JR - DI vanishes and P(R, D) is given by the first two terms of equation (9). 

The two series representations for V I R - D 1, JR - D I) from which the 

basic recurrence relations are derived are given by: 

* Guenther recently (see equation (2) in [91) derived an equation for P(R, D) in terms of 
Io(x) and the incomplete gamma function, which can be shown to be equivalent to equation 
(9) of the present paper. However, he did not exploit his relationship from the point of view 
of developing an efficient program for a high-speed digital computer. 
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V~ R-DJ7 1R-D ) JR2 -D_ 
2 

1_ 
2 

fRDI2 / R2+D 2 
_n 

0 

exp K RD wj w2" dw E T2n7X 

V JR-DI, JR-DIA I 
JR 2-D 2 1 [(2n) !] 2 

(11) XR +D)1 / 4RDV/r n=o 24'(n !)3 

I exp (R -D)2w] (2?) 
2 w = 1 -i M2,+1. 

The detailed derivations of equations (10), (11) are given in [4]. Briefly, to obtain 
equation (10), introduce a variable of integration transformation 

(12) w = Ar2/4 

into the integral of equation (3), then replace Io(2w) by its Taylor series expan- 
sion (see page 14, [8]), 

(13) I?(2w) = I (i)I (w2 )= 

which is convergent for all values of w, and subsequently reverse the order of in- 
tegration and summation, which can be justified by application of the Weierstrass 
"M" test. In order to derive equation (11) introduce a variable of integration 
transformation 

(14) w = Ar2 

into the integral of equation (3) and use the fact that 

I on Bw\ w 
(15) 2AcJO exp 2A) Io 2dw = 1, 

(See page 76, [8]). In the resulting integral expression, call it J, with upper and 

lower limits of integration of infinity and AK2 respectively, replace Io T by its 

asymptotic expansion (see page 58, [8]), i.e., 

(16) 1~~~~ ,~exp (w/2)N [ (2n) !]2 (2w2V, 
(16) Io2) /_/2X~ nE 24n !)3 (2w/2) \2/ V~ir(w /2) n=02n 

which is valid for sufficiently large w and finite N; subsequently interchange the 
order of integration and summation. The interchange is justified for all values of 
(2RD) for which equation (16) is valid because of the existence of the integral J 
(see page 17, [2]). 

The substitution of equations (13), (16) into equation (6) gives analogous 
series representations for aP/3R, i.e., 

(17) = R " S2n, 
AR nR 

(18 ) R E 14Dn 2,+l) 
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where 

(19) 82n = exp (>R + D2) (1)2 (RD)2f n>O 

2_ ___-_____ [(2n)fl2 (2 D)(2-), (20) X2n+i yXexp [_ - D)] (2RD) 2 )n > O0 

following the notation of [4], in which there are slight distinctions between S2n 

X2n+1 Y2n-i v and the corresponding unbarred variables used with V(K, c) and 
a V/IK. 

Thus two schemes are used to compute P. If 

(21) 2RD < M (M is a positive constant), 

then with reference to equations (10) and (17) 

T 2n - 10 2RD 2 

(22) 2 2 

R 2- D2 ( + 24n 2 S2n n > 1, 

(23) 32n (2) S2n-2, n > 1 

where the necessary initial terms are given by 

(24) To R2 - D F1 / I + D\ )1 JR 2 -D 
2 

(1D-2J) 

L (4\ ~~R2 ,D (1 

(25) So = exp ( 2R + D2) 

The following brief comments are made on the derivation of recurrence rela- 
tions (22) and (23). Fuller details are given in [4]. From equations (13) and (19), 
S2n is the general term in the series obtained by multiplying every term of the 
Taylor series for Io(RD) by exp [- (R2 + D2)/2], and equations (23) and (25) 
are obtained immediately. If T2n is regarded as defined by equation (10), two suc- 
cessive integrations by parts give T2n in terms of T2n-2 , R, D, and n, after which 
the term not containing T2n-2 can be written more concisely in terms of S2n X and 
equation (22) is the result. 

These basic recurrence relations are cycled until 

(26) T2in < S 2n < e ( > 0) 

Then P and aP/IR are given correctly to at least ( logo E - 1) decimal digits by 

(27) P(R, D) -[1-Z 2 ZT2n] (+) if R < D 
N, 

(28) 1?R E S2n. 
n=O 

If it is assumed that 

(29) 2RD > M, 
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then with reference to equations (11) and (18) 

(30) M2+1= 4RD Y2n1 - (R-D)2 (2n M2n-1 n > 1, 

4R 4RD-2n 

(31) 1= 4RD (2n ) X2n-1 n > 1 

(32) !2n+l (2n - 1) 1Y2n-1a n > 1, 

where the initial terms are given by 

(R+D) 2_\ JIR-DI exp (-y)dy 

(33) 

X\/2D (R+D)\ [ -\Erf(I R )], 
2 [(R-D)2] 

(34) X1 =V 
-- 

\j- exp 2 2 J 

The following brief comments are made on the derivation of equations (30) 
to (33). Fuller details are given in [4]. From equations (16) and (20), X2n+l is 
the general term in the expansion obtained by multiplying every term of the 
asymptotic expansion of Io(RD) by 4fRD exp [- (Rf2 + D2)/21. Equations (31) 
and (32), which together form a recurrence relation generating X2n~l, are obtained 
immediately, the introduction of the variable Y2n-1 leading to a computationally 
efficient algorithm for the simultaneous evaluation of the last two terms in equation 
(9). If M2n+1 is regarded as defined by equation (11), an integration by parts 
gives M2n?1 in terms of M2_1, R, D, and n, after which the term not containing 
M2n-1 can be written more concisely in terms of Y2n1 , and recurrence relation (30) 
is the result. M1, originally obtained by putting n = 0 in the definition of M2n+1, 
is expressed in equation (33) in terms of the error function (see [31, equations (6)) 
by a transformation in which y is (2) I R- D 

These basic recurrence relations are cycled until 

(35) M2n+1 < E, X2n1 < E (E > 0). 

Then P(R, D) and &P/IR are given correctly to (I logio E- 1) decimal digits by 

2 [ R 
- 
2+ 1- ~+) (+) if R > D (36) P (RI D) Y{14,DX2n?1?(L1 3M2n+1) ()if> 

[1 N 1 
(37) 

aR ~ R 
[ E Z 27+l 

The determination of the constant M is discussed in Appendix A of [4]. If the 
constants M and E were chosen such that 

(38) M= 30, E = 10-, 

then sufficient tests were made on the results to assure seven-decimal digit ac- 
curacy in the values of P and OP/OR for all values of R and D. The tests are de- 
scribed in [4]. The maximum number of terms, N', required for seven-decimal 
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digit accuracy in either series that occurs in equation (27) was twenty for 0 < R ? 
126 0 < D < 120. 

4. Table Computation-Discussion of Results. The extensive inverse table, 
mentioned in the introduction, has R tabulated as a function of P and D for the 

TABLE 1 
Inverse P(R, D) Table, R = R(P, D) 

\ D 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0 P \I 
.01 0.142132 0.150917 0.181965 0.247976 0.377894 0.973968 1.857355 2.807007 
.05 0.321093 0.340911 0.410355 0.552995 0.803492 1.589932 2.514287 3.475659 
.10 0.460192 0.488541 0.586808 0.780875 1.090931 1.931431 2.867729 3.833372 
.15 0.571548 0.606683 0.727145 0.956651 1.299471 2.164629 3.107065 4.075094 
.20 0.669719 0.710800 0.850071 1.106744 1.470965 2.351156 3.297689 4.267393 
.25 0.760426 0.806964 0.962923 1.241576 1.621141 2.511865 3.461479 4.432486 
.30 0.846714 0.898407 1.069594 1.366651 1.757905 2.656649 3.608743 4.580828 
.35 0.930528 0.987190 1.172547 1.485396 1.885955 2.791156 3.745340 4.718356 
.40 1.013296 1.074827 1.273564 1.600226 2.008448 2.919061 3.875068 4.848912 
.45 1.096204 1.162568 1.374100 1.713036 2.127745 3.043037 4.000676 4.975274 
.50 1.180355 1 . 251580 1.475479 1.825472 2.245802 3.165246 4.124378 5.099676 
.55 1.266891 1.343064 1.579042 1.939121 2.364426 3.287634 4.248157 5.224119 
.60 1.357113 1.438388 1.686286 2.055680 2.485472 3.412162 4.374006 5.350606 
.65 1.452637 1.539246 1.799042 2.177146 2.611062 3.541034 4.504154 5.481380 
.70 1.555634 1.647914 1.919739 2.306101 2.743883 3.677012 4.641388 5.619238 
.75 1.669270 1.767705 2.051892 2.446209 2.887695 3.823927 4.789566 5.768053 
.80 1.798604 1.903913 2.201075 2.603222 3.048351 3.987718 4.954663 5.933817 
.85 1.952745 2.066052 2.377281 2.787369 3.236215 4.178871 5.147218 6.127099 
.90 2.151322 2.274618 2.601947 3.020515 3.473382 4.419704 5.389656 6.370384 
.95 2.453851 2.591661 2.939763 3.368463 3.826253 4.777225 5.749279 6.731139 
.97 2.654829 2.801806 3.161592 3.595668 4.056141 5.009727 5.982997 6.965523 
.99 3.042407 3.205999 3.584494 4.026818 4.491533 5.449368 6.424667 7.408327 

.995 3.263342 3.435790 3.823110 4.269216 4.735933 5.695826 6.672133 7.656366 

.999 3.726147 3.915765 4.318250 4.770776 5.240984 6.204548 7.182694 8.167991 
.9999 4.302554 4.511127 4.927840 5.386401 5.860000 6.827233 7.807274 8.793692 

.99999 4.810368 5.033640 5.459903 5.922582 6.398559 7.368429 8.349868 9.337129 
.999999 5.269458 5.504595 5.937784 6.403513 6.881283 7.853179 8.835714 9.823646 

D 6.0 8.0 10.0 20.0 30.0 50.0 80.0 120.0 

.01 3.778556 5.747335 7.730490 17.70022 27.69100 47.68389 77.67999 117.6779 

.05 4.452164 6.424982 8.409712 18.38123 28.37229 48.36531 78.36146 118.3593 

. 10 4.811875 6.786445 8.771899 18.74428 28.73548 48.72858 78.72475 118.7226 

.15 5.054765 7.030393 9.016299 18.98923 28.98053 48.97367 78.96986 118.9678 

.20 5.247904 7.224314 9.210559 19.18391 29.17528 49.16846 79.16466 119.1626 

.25 5.413665 7.390705 9.377228119.35094 29.34237 49.33558 79.33179 119.3297 

.30 5.562570 7.540148 9.526912 19.50093 29.49241 49.48565 79.48187 119.4798 

.35 5.700590 7.678645 9.665623 19.63992 29.63145 49.62472 79.62094 119.6189 

.40 5.831589 7.810077 9.797253 19.77181 29.76339 49.75668 79.75291 119.7508 

.45 5.958359 7.937251 9.924613 19.89941 29.89104 49.88435 79.88059 119.8785 

.50 6.083144 8.062420 10.04996 20.02499 30.01667 50.01000 80.00625 120.0042 

.55 6.207953 8.187598 10.17531 ;20.15058 30.14229 50.13565 80.13191 120.1298 

.60 6.334797 8.314803 10.30269 120.27819 30.26994 50.26332 80.25959 120.2575 

.65 6.465923 8.446290 10.43434 20.41008 30.40188 50.39528 80.39156 120.3895 

.70 6.604135 8.584868 10.57310 '20.54907 30.54092 50.53435 80.53063 120.5286 

.75 6.753314 8.734427 10.72284 '20 .69907 30.69097 50.68442 80.68071 120.6786 

.80 6.919464 8.900983 10.88959 20.86610 30.85806 50.85154 80.84784 120.8458 

.85 7.113172 9.095143 11.08398 121.06080 131.05282 51.04633 81.04264 121.0406 

.90 7.356958 9.339466 11.32857 121.30578 131 .29787 51.29143 81.28775 121.2857 

.95 7 .718391 9.701640 11.69111 i21.66887 131.66108 51.65469 81.65104 121.6490 

.97 1 7.953181 9.936878 11.92658 21.90468 31.89696 51.89061 81.88697 121.8849 

.99 8.396685 10.38117 12.37128 22.34999 32.34240 52.33612 82.33251 122.3305 
.995 8.645082 10.62997 12.62029 122.59934 32.59182 52.58558 82.58198 122.5800 
.999 9.157380 11.14304 13.13378 123.11348 33.10609 53.09994 83.09636 123.0943 

.9999 9.783802 11.77031 13.76151 123.74194 133.73473 53.72866 83.72'513 123.7231 
.99999 10.32779 12.31496 14.30652 24.28755 134 .28047 54.27449 84.27098 124.2690 

.999999 10.81475 112.80245 14.79431 124.77585 34.76889 54.76298 84.75950 124.7575 
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following ranges: 

P = 0.01(.01)0.99, 

D = 0(.1)5(.2)10(2)20(5)120, 

and 

P = .99(.0005) .9990( .0001) .9999( .00001) .99999(.000001) .999999, 

D = 0, .05, .10, .25, .75, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 20, 30, 50, 80, 120. 

This table required the calculation of over 45,000 P(R, D) functions to an accuracy 
of seven or more decimal digits. The tabulated values of R, determined by a Newton- 
Raphson process, are correct to within one unit in the last digit position given. 
The method by which this conclusion was verified is given in Appendix C of [4]. 
A condensed version of the complete table is given below. The complete table as 
well as a similar one for K as a function of V and c are available by direct request 
to the authors. 

It can be proved that R(P, D) as a function of P approximates a univariate 
normal distribution to any desired accuracy for sufficiently large fixed values of 
D and I R - D /(R + D) << 1. The relation between R and P in this case is given 
by 

(39) P(R) D) - [1 + Erf fRIR et22 dt, 

where hR =R(0.50, D) ~ D + 1/(2D). (A slightly different formulation of the 
asymptotic behavior was given by Germond in [7]). This shows that the func- 
tional relationship is symmetric with respect to the point R = 4R , P = 0.50. 
This is evident from a study of Table 1. Also, if 20 < D < 25, and if AR is computed 
from the approximation D + 1/(2D) (which for these values of D is accurate to 
10-5 or better), and if values of R as a function of P are then computed from equa- 
tion (39) by inverse interpolation in an error function or univariate probability 
integral table, the results are, in general, correct within 10-3, or one unit in the 
fifth significant figure of R. Further, the accuracy improves rapidly as D increases. 
This means that an efficient inverse table such as Table 1 need extend only from 
P = 0 to P = 0.50 if D is large. Each value of R for P > 0.50 is then found with 
only one subtraction and one addition by using the symmetry property stated 
above. 

5. Acknowledgment. The authors wish to thank Mr. David Eliezer and Mr. 
Robert Belsky, who programmed and coded the editing procedure for setting up 
the complete tables, and Mr. Robert Gramp, who programmed and coded the 
method of computing V(K, c) and P(R, D) for the IBM 7090. The authors are 
indebted to the referee for suggestions which materially improved the introductory 
portion of this paper, for correcting a false impression the authors had concerning 
the origin of equation (9), and for calling the attention of the authors to the uni- 
variate normal character of the circular coverage function for large D, as com- 
mented on at the end of Section 4. 
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